Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 53(6): 2670-2677, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38224288

RESUMEN

Chlorhexidine dodecyl sulfate (CHX-DS) was synthesized and characterized via single-crystal X-ray diffraction (SC-XRD), 1H nuclear magnetic resonance (NMR) spectroscopy, 1H nuclear Overhauser effect spectroscopy (NOESY), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR). The solid-state structure, comprising a 1 : 2 stoichiometric ratio of chlorhexidine cations [C22H30Cl2N10]2+ to dodecyl sulfate anions [C12H25SO4]-, is the first report of chlorhexidine isolated with a surfactant. CHX-DS exhibits broad-spectrum antibacterial activity and demonstrates superior efficacy for reducing bacteria-generated volatile sulfur compounds (VSCs) as compared to chlorhexidine gluconate (CHG). The minimum inhibitory concentrations (MICs) of CHX-DS were 7.5, 2.5, 2.5, and 10 µM for S. enterica, E. coli, S. aureus, and S. mutans, respectively. Furthermore, MIC assays for E. coli and S. mutans demonstrate that CHX-DS and CHX exhibit a statistically significant efficacy enhancement in 2.5 µM treatment as compared to CHG. CHX-DS was incorporated into SBA-15, a mesoporous silica nanoparticle (MSN) framework, and its release was qualitatively measured via UV-vis in aqueous media, which suggests its potential as an advanced functional material for drug delivery applications.


Asunto(s)
Clorhexidina , Escherichia coli , Dodecil Sulfato de Sodio , Clorhexidina/farmacología , Clorhexidina/química , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química , Tensoactivos/farmacología
2.
ACS Omega ; 6(51): 35433-35441, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34984275

RESUMEN

Cetylpyridinium trichlorostannate (CPC-Sn), comprising cetylpyridinium chloride (CPC) and stannous chloride, was synthesized and characterized via single-crystal X-ray diffraction measurements indicating stoichiometry of C21H38NSnCl3 where the molecules are arranged in a 1:1 ratio with a cetylpyridinium cation and a [SnCl3]- anion. CPC-Sn has shown potential for application as a broad-spectrum antimicrobial agent, to reduce bacteria-generated volatile sulfur compounds and to produce advanced functional materials. In order to investigate its controlled-release properties, electrical resistance tomography was implemented. The results demonstrate that CPC-Sn exhibits extended-release properties in an aqueous environment as opposed to the CPC counterpart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...